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Summary

It is usually difficult to localize genes that cause diseases
with late ages at onset. These diseases frequently exhibit
complex modes of inheritance, and only recent gener-
ations are available to be genotyped and phenotyped. In
this situation, multipoint analysis using traditional exact
linkage analysis methods, with many markers and full
pedigree information, is a computationally intractable
problem. Fortunately, Monte Carlo Markov chain sam-
pling provides a tool to address this issue. By treating
age at onset as a right-censored quantitative trait, we
expand the methods used by Heath (1997) and illustrate
them using an Alzheimer disease (AD) data set. This
approach estimates the number, sizes, allele frequencies,
and positions of quantitative trait loci (QTLs). In this
simultaneous multipoint linkage and segregation anal-
ysis method, the QTLs are assumed to be diallelic and
to interact additively. In the AD data set, we were able
to localize correctly, quickly, and accurately two known
genes, despite the existence of substantial genetic het-
erogeneity, thus demonstrating the great promise of these
methods for the dissection of late-onset oligogenic
diseases.

Introduction

Many diseases with a genetic component are not ap-
parent at birth. For example, schizophrenia, glaucoma,
Alzheimer disease (AD), and various cancers all typically
occur later in life. Since their presence is not immediately
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apparent, there is hope that, after the genetic mecha-
nisms that lead to these diseases are determined, treat-
ments may be developed that prevent or delay their on-
set. Unfortunately, late-onset diseases tend to exhibit
complex modes of inheritance, and pedigrees segregating
for such diseases tend to contain many members who
are deceased, thereby reducing the number of individuals
for whom genetic material is available. These factors
contribute to the extreme difficulty associated with the
genetic dissection of late-onset traits.

The question of which analysis methods are best suited
to localizing genes for complex traits has been the subject
of some discussion. Proposals have ranged from asso-
ciation-based methods (Risch and Merikangas 1996)
and other small-pedigree methods (e.g., Haseman and
Elston 1972; Olson and Wijsman 1993; Kruglyak et al.
1995) to methods applied to large, extended pedigrees,
(e.g., Ott 1979; Amos 1994; Greenberg et al. 1996). A
recent workshop confirmed the potential value of mul-
tipoint analysis and also demonstrated that the use of
extended, rather than nuclear, pedigrees could provide
additional information (Wijsman and Amos 1997). Un-
fortunately, a multipoint linkage analysis with many
markers in extended pedigrees, using traditional exact
methods, can be computationally intractable and will
likely remain so for the foreseeable future, even with
steady exponential increases in computer speeds and the
algorithmic improvements found in programs such as
VITESSE (O’Connell and Weeks 1995) and FASTLINK
(Cottingham et al. 1993).

Another difficulty associated with dissecting a com-
plex trait is that multiple trait loci may contribute to the
phenotype. Most analysis methods do not explicitly al-
low for multiple trait loci in the inheritance model, pri-
marily because of computational limitations. Analysis of
a complex trait under two-locus models has been shown
to provide substantial gains in power to detect linkage,
as compared with single-locus models (Schork et al.
1993; Knapp et al. 1994). Although single-locus models
can be used to find traits influenced by two genes (Vie-
land et al. 1992a, 1992b), this difference in power to
map trait loci between single-locus and oligogenic mod-
els may become more pronounced as the number of
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genes influencing the trait increases (Rice et al. 1993).
Furthermore, several results suggest that specifying the
wrong model for the trait locus linked to the marker
may cause biased location estimates or outright failure
to detect linkage (Clerget-Darpoux et al. 1986; Green-
berg and Hodge 1989). These issues suggest that meth-
ods not computationally limited to single-locus models
may be necessary for efficient genomic localization of
trait loci for complex diseases. Unfortunately, it appears
that carrying out such an analysis, using exact compu-
tation and accounting for all marker and family data,
is a computationally intractable problem. However, a
compromise that does not require an exact solution can
result in a feasible analysis that considers a large param-
eter space.

One way to implement this compromise is to use
Monte Carlo Markov chain (MCMC) methods (Me-
tropolis et al. 1953; Hastings 1970). These methods use
statistical sampling of the parameter space to estimate
a result that is difficult or impossible to obtain from
exhaustive enumeration of all genotype probabilities.
MCMC methods have been used to estimate linkage
likelihoods in problems in which compromise in pedi-
gree size or model complexity was not desired (Guo and
Thompson 1992; Thompson 1994a, 1994b). These
methods also provide a way to implement Bayesian ge-
netic analysis, in which computationally tractable eval-
uation of high-dimensional integrals is required (Ste-
phens and Smith 1993; Hoeschle 1994; Heath 1995;
Satagopan et al. 1996). Additionally, MCMC samplers
have been developed for sampling over a space of dif-
ferent models, providing an estimate of which models
best fit the data (Carlin and Chib 1995; Green 1995;
Phillips and Smith 1996).

Recently, an MCMC multiple-trait-locus joint linkage
and segregation analysis method for quantitative trait
loci (QTLs) has been developed (Heath 1997). This
method, although extremely promising, is limited to the
analysis of continuous trait data. There are a number of
types of real data that do not fit the QTL model. In
particular, age-at-onset data for a trait that is not fully
penetrant or that typically has a late age at onset fits
this model poorly. Although one could do an analysis,
using only the ages at onset of affected individuals, with
the original model, this would result in the loss of a large
amount of information that would have come from the
censored individuals.

Our primary goal was to expand the methods of
Heath (1997) to age-at-onset data. We also demonstrate
this expanded method, in an application to real age-at-
onset data for a complex trait, and we provide some
practical insight gained from this application. The real
data set available to us was an AD data set, which had
been used previously to localize two AD genes, PS1 and
PS2 (Schellenberg et al. 1992; Levy-Lahad et al. 1995a,

1995b). This sample is heterogeneous, containing fam-
ilies in which either PS1 or PS2 mutations have been
found, as well as families in which the cause of AD is
as yet unknown. Our methods quickly and correctly lo-
calized the known AD genes, demonstrating the utility
of this approach.

Analysis Methods

QTL Model Summary

The MCMC algorithm described by Heath (1997) and
implemented in the program Loki (PANGAEA) is a com-
bined segregation and linkage analysis for oligogenic
quantitative traits, using full-chromosome multipoint
data. We modified the algorithm to deal with censored
data, so that age at onset could be analyzed as a right-
censored quantitative trait.

In brief, MCMC methods are used to sample possible
sets of all model values and full-genotype information
consistent with the observed data (observed trait values,
observed genotypes, and pedigree information). Such a
set will be referred to as a “state.” The model allows
for multiple QTLs such that the number of trait loci is
one of the sampled values, and interactions between loci
are additive. In the analysis, each state, S, was specified
by

2( )S � k,G,M,l,d,h,a,j ,m,Y ,e

in which k is the number of QTLs and had a Poisson
prior distribution; G is the matrix of complete genotypes
(including phase) for all the QTLs; M is the matrix of
complete genotypes (including phase) for all the mark-
ers; l is the vector of linked QTL map positions (in-
cluding the chromosome on which each QTL is located);
d is a vector indicating which QTLs are linked to chro-
mosomes present in the analysis; h is the matrix of allele
frequencies for the QTLs and markers; a is the matrix
of additive and dominance effects for each QTL, that
is,

a d1 1

a � _ _ ,( )
a dk k

in which is the additive and is the dominance effecta di i

for the QTL; is the variance of e, the residualth 2i je

environmental effect; m is the overall mean; and Y is the
observed matrix of genotype data and QTL values, on
the available pedigrees. Note that the QTLs are assumed
to be diallelic, and the values for the quantitative trait,
y, are:
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Figure 1 Hypothetical example with two genotype onset dis-
tributions, A and B. An unaffected 75-year-old will be assigned an age
at onset from the hatched area under the B curve, if that person is
currently assigned genotype B, and from the hatched area under the
A curve, if currently assigned genotype A. Heights a and b indicate
the relative likelihoods of genotypes A and B, respectively, for an in-
dividual with onset at age 75 years.

k

y � m � Q a � e,� i i
i�1

in which Qi is the incidence matrix for each QTL effect
and can be derived from G, ai is the ith row of a, and
e is the normally distributed residual environmental
effect.

The sampling is done by taking the initial state S,
making a proposal for a new state S′ (a different set of
model values), and computing a Metropolis-Hastings ac-
ceptance ratio (Metropolis et al. 1953; Hastings 1970),
A, in which:

′ ′p(S )q(S; S )
A � .′p(S)q(S ; S)

In this formula, p(S′)/p(S) is the probability ratio of the
two states, q(S;S′) is the probability of proposing the
reverse move (from S′ to S), and q(S′;S) is the probability
of proposing the forward move. The new state is then
randomly accepted, with probability min(1,A), or it is
rejected and the old state is kept. For details about the
computations entering into the acceptance ratio, see
Heath (1997). The complete updating of the state is, in
fact, broken into a number of smaller steps, each up-
dating a subset of the state. The steps in each sampling
iteration were:

(1) Update ages at onset for individuals with censored
data.

(2) Update the residual variance, .2je

(3) Propose either:
(a) the birth or death of a QTL, or
(b) splitting one QTL into two or combining two

QTLs into one.
(4) Update QTLs and markers:

(a) QTL effects,
(b) QTL positions, and
(c) QTL and marker genotypes locus by locus.

(5) Update QTL and marker allele frequency.
(6) Update the “overall mean,” m.
(7) Output state and repeat.

Age-at-Onset Model

The model used in the current study differs from that
described by Heath (1997), in step 1 (above). All other
steps remain the same. In the original model, individuals
had either observed trait values or missing trait values.
For individuals with missing trait values, no weighting
for trait values was done in other steps. Note that, under
the original model, no updating of trait values was done.
The current model deals with right-censored quantitative
traits: for each individual, we have either an observed
trait value for affected individuals (uncensored data); an
observed censored value, less than the true unobserved

trait value for unaffected individuals (censored data); or
a missing trait value. Observed or missing trait values
are treated in the same manner as before, but a new
treatment is required for censored values. In this case,
trait values were sampled, conditional on the current
QTL genotypes and censored value: a value was sampled
from the truncated normal distribution for each indi-
vidual’s genotype, with the truncation point at the cen-
sored value (current age or age at death; see fig. 1). The
actual trait values for individuals with observed values,
or the sampled trait values for individuals with censored
values, were then used in other updating steps, such as
QTL genotype updating, that were conditional on trait
values (see fig. 1), as described elsewhere (Heath 1997).

The censoring model also contains two independence
assumptions, which should be noted: (1) censoring age
and age at onset are independent, and (2) the observation
of disease status is independent among individuals
within each family. For unaffected living individuals,
there is no reason to suspect that censoring age and the
putative age at which they will get the disease have any
dependence, other than that induced by survival to a
particular age. However, this may not be true for de-
ceased individuals. For example, for AD, there is some
suggestion of correlation with risk factors also associated
with coronary artery disease, which might influence cen-
soring age (Jarvik et al. 1994). We believe that mild
violation of this assumption will have only minor effects
on the linkage analysis, because censoring age in a fam-
ily-based linkage analysis is only one constraint on the
latent age at onset. Latent onset age is also constrained
by the distribution of observed onset ages, both in the
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sample and in the family; the segregation patterns of the
disease within the family; and if linked, the genetic
marker data. The second assumption, that observations
are made independently within each family, is probably
also violated for many diseases. When a person is iden-
tified with a particular disease, family members tend to
be more closely watched. This has the effect of reducing
the within-family variance for affected individuals,
whereas other sources of variance remain the same, pos-
sibly causing a false boost in a genetic signal. This may
result in an upward bias in the estimate of the effect of
a QTL, but the location estimate should remain
unbiased.

An additional assumption is that age at onset is nor-
mally distributed for each genetic group (those sharing
the same genotype at all QTLs), with all variances equal,
so that the normal distributions differ only in their
means. That the distributions themselves are normally
distributed is not an unreasonable assumption, since
many processes do result in distributions that are well
approximated by the normal distribution. In some cases
one may wish to consider a transformation such as a
Box-Cox power transformation, but we did not do so
here. The assumption that each group has the same var-
iance may be more questionable, but we found it nec-
essary for computational reasons. Note that these as-
sumptions are essentially a genetic survival analysis in
which the survival curve is restricted to the same cu-
mulative normal curve, shifted for each group. Also, in
using a right-censored quantitative trait model for age
at onset, there is an implicit assumption that all indi-
viduals will eventually get the disease, if they live long
enough.

Practical Considerations

It should be emphasized that, in addition to placing
QTLs at a particular location on a chromosome, this
procedure can place a QTL in a state that is not on any
of the chromosomes included in the analysis. This is
useful, because it allows modeling of QTLs that are
linked to chromosomes about which marker data are
not available. Interpretation of the results therefore re-
quires examination of all QTLs, both those placed on a
specific chromosome and those placed “elsewhere.”

Since MCMC methods are stochastic, it is important
not to base conclusions on a single analysis run. It is
possible for the sampling procedure to become “stuck”
in a particular region of the state space (a local maxi-
mum). Although the MCMC chain used here is theo-
retically irreducible (i.e., any point of the state space can
be reached from any other), there are some very path-
ological cases in which the transition probabilities are
so low that the MCMC chain is effectively reducible.
Thus, it is important to run several analyses with dif-

ferent random number seeds and parameter values and
then to examine these analyses for consistency. For a
true strong signal, we expect all analysis runs to show
QTL placements near that location in the majority of
their iterations. For a weaker signal, we expect QTL
placements in the signal region at a more frequent rate
than expected from the prior distribution. Note that, in
the absence of any linkage markers, the number of QTL
placements in the region is proportional to the prior
distribution. Thus, fewer QTL placements than expected
under the prior distribution can be taken as evidence for
exclusion. Another feature we look for, in both strong
and weak signals, is a series of iterations in which the
QTL is removed from the signal region, for a number
of iterations, and then is placed back in the same region.
This is indicative of a true signal and of good mixing of
the MCMC sampler.

Sample

The AD data, used to determine the ability of these
methods to localize disease genes, were obtained through
a large study of the genetic basis of Alzheimer disease,
which included obtaining informed consent for all sub-
jects. We elected to use a real rather than a simulated
data set because we feel that simulated data almost in-
variably fall short of the complexity found in real data.
Furthermore, the basic method, without age-at-onset
censoring, has already been tested on several simulated
data sets (Heath 1997; Heath et al. 1997). There was a
certain amount of missing marker data in this real data
set, stemming from the history behind its collection, but
additional marker typing for the purpose of testing the
new methodology presented here could not be justified.
Even in the absence of additional data collection, the
data available to us were sufficient to test the method
adequately.

The data set consisted of 1,150 individuals in 84 fam-
ilies, which fall into three subgroups: Volga German
early-onset families (VG), non–Volga German early-on-
set families (EO), and a group of other families with
generally later onset of AD (LO) (see table 1). Observed
ages at onset were used as trait values for affected in-
dividuals, whereas age at last examination or age at
death was used as the censored value for unaffected in-
dividuals. The VG families share a common ethnic her-
itage and were used to localize and clone the PS2 gene
on chromosome 1 (Levy-Lahad et al. 1995a, 1995b). A
single mutation in this gene accounts for AD in five of
the seven VG families (Levy-Lahad et al. 1995a), rep-
resenting 167 of 241 VG individuals. The EO families
were used to localize the PS1 gene on chromosome 14
(Schellenberg et al. 1992), and the PS1 gene was sub-
sequently cloned (Sherrington et al. 1995). Analysis of
the EO families has identified several mutations in the
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Table 1

AD Subgroups

STRATIFICATION GROUP

VG EO LO TOTAL

Families 7 (5) 9 (8) 68 84
Individuals 241 (167) 295 (261) 624 1,150
Family sizes 6–58 12–53 4–26 4–58
Marker data:

Chromosome 1 81–119a ) ) )
Chromosome 5 99–114a ) ) )
Chromosome 14 56–113/0–113a,b 46–159a 0–243a 61–489a

NOTE.—Numbers in parentheses for VG families indicate numbers for families
found to have a PS2 mutation; for EO families, families found to have PS1
mutations.

a Minimum and maximum number of individuals typed for each marker used.
b (VG-only run)/(chromosome 14–only run).

PS1 gene accounting for AD in eight of the nine families,
representing 261 of the 295 EO individuals (Ikeda et al.
1996; Poorkaj et al. 1998). The cause of AD in the LO
families has not been conclusively determined. Those
screened have not been found to have either PS1 (Schel-
lenberg et al. 1993) or PS2 mutations (E. Wijsman and
G. Schellenberg, unpublished data). Other candidate
genes, such as apoE (Corder et al. 1993), as well as genes
as yet unidentified, remain possibilities.

For historical reasons, the most extensive genetic
marker data were available in the VG families, and the
least extensive in the LO families. The emphasis in the
early years of the genome screen was on finding genes
for early-onset AD, and once the PS1 gene had been
mapped, the EO families were excluded from further
genome screening. Note, however, that some of the early
screening markers were available for some of the LO
families. LO families were also typed for markers in
regions identified in the EO and VG families. On chro-
mosome 14, the number of markers available for LO
families ranged from 1 family with 6 markers to 17
families with no markers available. In the 51 LO families
with marker data, the mean number of markers was
three. The coverage in the LO families was somewhat
better on the telomeric side of PS1 than on the centrom-
eric side. Since the PS1 gene in the EO families on chro-
mosome 14 was localized earliest, later efforts at local-
ization on other chromosomes focused only on the VG
families. As a result, ample marker data were available
for VG and EO families on chromosome 14, with 11–16
markers available in each EO family (12 markers were
used in this analysis) and 3–10 for each VG family. Only
in the VG families were sufficient markers available on
chromosome 1 (�19 markers) and chromosome 5 (�11
markers). Chromosome 5 was included as a negative
control in the current analysis. Also, as is to be expected
with a late-onset disease, genetic material was unavail-
able for approximately one-half of the individuals within

each family because of the large number of deceased
individuals.

Note that, although there are differences between
groups in marker availability, there was no within-group
bias among markers typed on the basis of PS1 or PS2
mutation status. Furthermore, since the group stratifi-
cation was performed before the linkage analysis, each
group is, in fact, heterogeneous. In the case of the VG
sample, heterogeneity has been documented, both within
and between families. Most individuals with genetic ma-
terial available were screened for the PS2 mutation. No
PS2 mutation was found in two of the seven VG families,
and several individuals in the remaining five families
showed AD but no PS2 mutation.

The genetic maps used in the current study were based
on information obtained from web sites (Genome Da-
tabase; Rockefeller database). Since none of these link-
age maps contained all the markers used, it was neces-
sary to combine information from several, to form a
“consensus” map. Roughly linear interpolation was per-
formed with the markers contained on multiple maps,
to combine the results into one map. If there was a
disparity between distances in different maps, the larger
distance generally was used. If a marker could not be
convincingly ordered, it was not used. This resulted in
sex-averaged map lengths of ∼310 cM for chromosome
1, ∼220 cM for chromosome 5, and ∼171 cM for chro-
mosome 14. Because of a lack of marker data near the
q-arm telomers of chromosomes 5 and 14, these maps
were truncated in some analysis runs to 190 cM and
161 cM, respectively. The markers used were RH, PGM,
AMY2B, D1S238, D1S422, D1S412, D1S306, D1S249,
D1S245, D1S205, D1S425, D1S237, D1S229, D1S227,
D1S479, D1S459, D1S446, D1S235, D1S180, and
D1S102, on chromosome 1; D5S392, D5S395, D5S424,
D5S428, D5S421, D5S414, D5S436, D5S434, D5S410,
D5S412, and D5S422, on chromosome 5; and TCRD,
D14S47, D14S52, D14S66, D14S77, D14S43, D14S53,
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Figure 3 Location of each QTL placed on chromosome 14, in
each iteration of the all-families analysis. Arrows indicate marker lo-
cation; line indicates PS1 location.

Figure 2 Histogram of chromosome location vs. variance, for every QTL placed on chromosome 14 in all iterations of one analysis run,
using all available families and 12 markers on chromosome 14. Arrows indicate marker locations; line indicates PS1 location. Contour lines
below histogram are at 25, 50, 100, 200, 400, 800, 1,600, and 3,200 counts.

D14S55, D14S48, PI, AACT, and D14S1, on chromo-
some 14. Note that D14S66 and D14S48 were not avail-
able for VG families and thus were not used in analyses
that included only those families.

Data Analysis

Two analyses of the AD data are presented here. We
performed one analysis of all available families, using
chromosome 14 data, and the other of the VG families
alone, using marker data from chromosomes 1, 5, and
14. In both analyses, the mean of the Poisson prior dis-
tribution on the number of QTLs was 1. Limited ex-
perimentation has indicated that the identification of
gene locations is not very sensitive to the value of this
mean. The first analysis, of chromosome 14 with all
available families, used 12 markers with heterozygosities
of 0.32–0.93. This analysis explored the ability of the
proposed methods to describe and localize disease genes
in the presence of significant genetic heterogeneity, with
only 23% of the individuals known to be in families
segregating for chromosome 14 PS1 mutations. The
analysis of the VG families on 3 chromosomes used 40
markers (19, 11, and 10 markers on chromosomes 1, 5,
and 14, respectively). This analysis examined the ability
of these methods to locate a disease gene, in the presence
of modest genetic heterogeneity, when given a large sec-
tion of the genome to explore. Although these analyses
are sufficient to demonstrate the methods, ideally we also
would like to have performed an all-family analysis of

multiple chromosomes. Unfortunately, full screens for
chromosomes 1 and 5 were not available for the LO
and EO families, and thus a joint analysis, using all
families and all three chromosomes, was not possible.
The lack of these additional data is more than compen-
sated by the use of real data.

Results

The age-at-onset model applied to analyses of the AD
data produced correct localizations of both known genes
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Figure 4 Variance of each QTL not placed on chromosome 14,
in each iteration in the all-families analysis.

and evidence for additional genetic effects, demonstrat-
ing the potential usefulness of this method. The all-fam-
ilies chromosome 14 analysis correctly localized the PS1
gene, found evidence for a second gene on chromosome
14, and found segregation evidence for several other
genes elsewhere, including one suggesting the PS2 gene
in the VG families. The VG-families analysis with
marker data on chromosomes 1, 5, and 14 correctly
localized the PS2 gene and found segregation evidence
for other AD genes, probably indicating a genetic factor
in the non-PS2 AD cases that is not on chromosome 1,
5, or 14. The localizations appear to be at least as good
as those in the original analysis and were obtained in
significantly less time.

All-Families Chromosome 14 Analysis

The analysis of chromosome 14 with data from all
84 families provides validation for the age-at-onset
model. This analysis not only produced a good locali-
zation of the PS1 gene; it also produced several addi-
tional signals, suggesting the presence of other genes.
Figures 2, 3, and 4 are plots from one analysis run,
focusing on three variables: map position (in centimor-
gans) of the QTLs placed on chromosome 14, the var-
iance resulting from each QTL, and the MCMC sam-
pling iteration number.

Figure 2 shows a strong signal, placing a large-effect
QTL for age at onset on chromosome 14 in the all-
families analysis. This figure is a histogram of all QTLs
placed on chromosome 14, showing map position versus
QTL variance. The variance that is attributed to each
QTL is a measure of the effect size of each locus and
depends on the allele frequencies and the effect size of
each genotype. The pairwise plot of QTL positions ver-
sus variance is more effective for comparing the essential

features of the results than is a simple histogram showing
the number of QTL map placements at each map po-
sition, because very-small-variance QTLs can be more
easily placed at random locations along the chromosome
than larger-variance QTLs. Indeed, one can observe a
smear of easily placed small-variance QTLs across chro-
mosome 14. At larger variances, the histogram is rela-
tively flat, away from the ridge produced by the many
QTLs placed at the known PS1 location, which provide
a localization for this gene. Thus, this plot helps separate
signals from background noise. Note that there were two
distinct peaks with different variances at PS1. The
smaller of the two peaks at PS1 (variance ∼25) had its
maximum ∼1 cM from the known gene location,
whereas the larger (variance ∼100) was ∼3 cM away.
We used the absolute measure of QTL variance in this
plot rather than a relative measure, primarily because
we had a fixed prior distribution on the QTL variance.
Thus, the ease with which a QTL can be placed at a
location is related to its absolute variance, and so ab-
solute variance should be used as a means to help sep-
arate signals from noise.

A third peak, possibly indicating a previously un-
known gene, can be seen, broadly centered between the
PI/AACT markers and D14S1, at a modest QTL vari-
ance. A number of QTLs at larger variances were also
placed in this region. The less accurate localization of
this peak is not surprising, given the wider marker spac-
ing and relatively low informativeness of the PI and
AACT markers.

The plot of iterations versus location for all QTLs
placed on chromosome 14 (fig. 3) indicates both the
strength of the signal and the mixing of the sampler. The
consistency of placements over iterations indicates the
strength of a signal, with strong signals producing clear
lines across this plot, as can be seen in figure 3 near the
PS1 location. If the sampler is mixing properly, we also
expect to see breaks in such a line, indicating iterations
where the QTL is removed from the signal region and
then replaced. Furthermore, in most iterations, two
QTLs were placed in the region of PS1, corresponding
to the two peaks seen in figure 2. QTLs contributing to
the third peak appeared after ∼90,000 iterations in the
top of the plot. A QTL is not always placed between PI/
AACT and D14S1 but comes and goes for hundreds or
thousands of iterations. Similarly, two QTLs are not
placed in the region of PS1 in all iterations, but whenever
one is removed, it is eventually replaced, indicating
proper mixing.

Evidence for genes on other chromosomes is illus-
trated by figure 4, which shows iteration versus variance
for all QTLs, placed in each state, that were not linked
to chromosome 14. A large-variance QTL that could
not be placed on chromosome 14 can be seen in this
plot. This QTL is probably indicative of the PS2 mu-
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Figure 5 Histogram of chromosome location vs. variance, for every QTL placed on chromosome 1, in all iterations of one analysis run,
using the VG families and 40 markers on chromosomes 1, 5, and 14. Arrows indicate the location of the 19 markers on chromosome 1.

tation in the VG families. This conclusion is supported
by the variance contribution of this unlinked QTL,
which is consistent with that found on chromosome 1
in the VG-family analysis (see figure 5). There was also
evidence of several smaller-variance QTLs not linked to
chromosome 14 (fig. 4), some of which might corre-
spond to genes causing AD in the LO families.

With MCMC methods, the repeatability of an analysis
run is an important question in determining whether the
sampler is mixing well and running for enough itera-
tions. Whereas figures 2–4 are plots from a single rep-
resentative analysis run, ∼24 runs were performed with
different random number seeds and some with different
parameter values. Each analysis run consisted of
20,000–200,000 iterations, and all had features in com-
mon with the run presented here. All had �1 peak cen-
tered near PS1, and nearly all runs had 2 peaks, with
variances tending to be centered near 40 and 100. Those
that did not have two peaks at PS1 were all shorter
(∼20,000 iteration) analysis runs, that likely had not run
long enough. Most runs found a large QTL, with var-
iance of ∼200, that was not placed on chromosome 14,
which we believe is attributable to the PS2 gene in the
VG families. Finally, like the analysis run shown here,
most runs (including all the longer analysis runs) pro-
vided some evidence of an additional QTL telomeric to
PS1. However, only a few analysis runs provided a dis-
tinct third peak like the one shown here. In those that
did develop a third peak, the peak tended to appear after
a large number of iterations, perhaps indicating that the

program will need to be run for more iterations to lo-
calize weaker signals. Additionally, an analysis run using
a sparser subset of the chromosome 14 markers also
localized a QTL to the PS1 region, although the local-
ization was not as accurate. This sparser subset of mark-
ers contained more-uniform information along the
length of the chromosome.

Three-Chromosome Analysis of VG Families

Our analysis of the VG families, using 40 markers on
chromosome 1, 5, and 14, further validated the age-at-
onset model by providing a good localization of the
known mutation (PS2), as well as some additional ex-
clusion information. The histograms showing location
versus QTL variance for the three chromosomes (figures
5, 6, and 7) showed a sharp peak at the PS2 location,
with very few QTLs placed elsewhere on these chro-
mosomes. This peak was centered at the location of the
PS2 gene. Additionally, many more QTLs were placed
on chromosome 1 (214,028) than on chromosome 5
(14,554) and chromosome 14 (44,776), and the vast
majority of the points on chromosome 1 were placed in
the region of PS2. On the basis of the prior probability
of linkage and the number of QTLs found in each it-
eration, in the absence of any linkage information, each
chromosome should have had ∼47,500 placements, giv-
ing a threshold from which to evaluate evidence of link-
age or exclusion. Although we plan to address calibra-
tion of results from this method in future work, these
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Figure 6 Histogram of location vs. variance, for every QTL placed on chromosome 5, in the VG-families analysis run. Arrows indicate
the 11 marker locations.

results gave strong evidence for a QTL on chromosome
1 at or near PS2 but gave little evidence for any QTLs
on chromosome 5, 14, or elsewhere on chromosome 1,
in the VG families.

The exclusion of chromosomal regions for linkage ap-
peared, not surprisingly, to be somewhat dependent on
the quality of the markers, with the better overall marker
quality on chromosome 5 leading to its “exclusion”
from linkage. In some regions of chromosome 14, such
as that near PS1, the marker information was better than
for chromosome 5. Fewer QTLs were placed in these
regions, suggesting that PS1 mutations did not occur in
the VG families. However, when the heterozygosities of
all the markers and the distribution of the markers over
each chromosome were considered, the marker infor-
mation spanning chromosome 5 was actually somewhat
better than that spanning chromosome 14, resulting in
a smaller number of QTLs placed on chromosome 5
than on chromosome 14. Consequently, chromosome 5
is excluded from linkage to AD QTLs in the VG families,
whereas, although some regions of chromosome 14 can
be excluded, the chromosome, as a whole, cannot.

Evidence for two genes segregating can be seen in the
plot of iterations versus variance for all QTLs not placed
on any of the three chromosomes (fig. 8). First, com-
parison of the unlinked QTLs and the iteration versus
QTL location on the chromosome 1 plot (fig. 9) showed
that, in those iterations where a QTL was not placed
near PS2, there tended to be an unlinked large-variance
QTL, and when a large-variance QTL was placed near
PS2 there tended not to be a large-variance QTL that

was unlinked. Second, there was evidence for a mod-
erate-variance QTL not linked to chromosomes 1, 5, or
14, possibly representing a gene in the two families not
found to have PS2 mutations.

The consistency was even greater among the multiple
analysis runs of the VG families than among the chro-
mosome 14–only analysis runs. In contrast to the chro-
mosome 14–only analysis, the results from each of the
3-chromosome analysis runs for the VG families were
nearly identical to those presented here, as were results
from analysis runs, using only the VG families, of chro-
mosomes 1 and 5, chromosomes 1 and 14, and chro-
mosome 1 alone. In addition, analysis runs using only
9 of the 20 markers on chromosome 1 also localized a
QTL in the PS2 region, although the localization was
more accurate with the full set of markers.

Computer Requirements

Both of the analyses presented here were accomplished
relatively quickly. Each took ∼4 d on a DEC Alpha Sta-
tion 500 running at 333 MHz. Although the all-families
chromosome 14 analysis included more subjects, the
three-chromosome analysis of the VG families had more
markers, resulting in very similar needs for computing
time. The memory requirements of this algorithm were
a very modest 10–12 MB total memory, with only 3–4
MB of real memory. Both of these analyses were accom-
plished in much less time than is required for multipoint
analysis using exact methods. For comparison, a pre-
vious three-marker, single disease–locus analysis of just
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Figure 8 Variance of each QTL not placed on chromosomes 1,
5, or 14, in each iteration of the VG-families analysis.

Figure 7 Histogram of locations vs. variance, for every QTL placed on chromosome 14, in the VG-families analysis run. Arrows indicate
the 10 marker locations.

the EO and VG families required comparable computer
time (∼3 mo on a computer ∼30# slower [Schellenberg
et al. 1992]). The version of the analysis program (Loki
2.1) now available is ∼4# faster than the version avail-
able at the time of the analyses presented here. It is not
possible to estimate accurately the time required for an
exact 12-marker or 40-marker multiple disease–locus
analysis with traditional methods, because not only
would the computation time be exceptionally long, but
the memory requirements would be far beyond the ca-
pacity of any computer currently available to us.

Discussion

The results presented here demonstrate the flexibility,
robustness, and manageability of these MCMC methods
in performing a multipoint analysis of large pedigrees
with age-at-onset data. We used these methods, as im-
plemented in the program, Loki, to analyze data from
large pedigrees with many polymorphic markers for Alz-
heimer disease, a complex late-onset oligogenic trait. The
utility of coupling the age-at-onset model with MCMC
methods is indicated by the fact that, if we had no prior
knowledge of the disease, we would still clearly conclude
that there are large-effect QTLs for AD at approximately
the PS1 and PS2 locations. Furthermore, evidence was
found indicating that several additional genes may con-
tribute to AD, and one of these may be located on chro-
mosome 14. Although these results are interesting in
themselves, the methods should be applicable to the ge-
netic dissection of other “diseases of aging” and possibly
to other diseases with age-at-onset data.

Gene Localization

The accuracy of the localization of known genes in
the AD data analyses was quite good, even in the pres-
ence of genetic heterogeneity (which was substantial in
the all-family analyses). In the vast majority of iterations,
a QTL was placed within 10 cM of the known gene,
and the distribution of these QTLs, both in the analysis
runs shown here and in those not shown, always had
its peak within a few centimorgans of the known gene.
An adequate localization usually was obtained after
50,000 iterations, although additional iterations im-
proved the localization. The accuracy of the localization
was improved by the relatively dense marker sets typed
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Figure 9 Location of each QTL placed on chromosome 1, in
each iteration of the VG families analysis. Arrows indicate marker
locations; line indicates PS2 location.

around the PS1 and PS2 genes, but the runs with sparser
maps indicate that a dense map is not required for de-
tection. This suggests that these analysis methods would
be amenable to a two-stage marker screening process.
A 20-cM initial screen, for example, could be followed
up by a 5-cM screen in areas that produced positive
evidence of linkage. These localizations are also com-
parable to, if not better than, those obtained with tra-
ditional linkage analyses. Furthermore, in the presence
of the significant heterogeneity that defined this data set,
traditional exact methods used on the full all-family data
set would not have detected evidence of linkage to chro-
mosome 14. In the original analysis of these data (Schel-
lenberg et al. 1992), the EO group was analyzed sepa-
rately, and this allowed evidence of linkage to be
detected. Unfortunately, stratification schemes for many
diseases are not readily apparent, or they require a great
deal of time and effort to devise and carry out. The
methods implemented here appear to eliminate some of
the need to predetermine subgroups for analysis, al-
though there is still a need to determine which QTLs
are segregating in which families, after localizing a gene.
This will be addressed in future work.

The double peak at PS1 has two likely explanations.
First, the EO families are known to have several different
PS1 mutations. However, the model used here assumes
a diallelic QTL. If these PS1 mutations in fact result in
different mean onset ages, the additional alleles could
be fitted by placing a second QTL in the same position.
Second, the assumption is made that the QTL distri-
butions are normal, so a second QTL might represent a
compensation for nonnormality. The first hypothesis is
supported by the facts that all the VG families with PS2
mutations were known to have the same mutation and
that only a single peak was found at PS2. Whether either

of these explanations (or perhaps some other explana-
tions) is true, the accurate gene localization of the two
known AD genes, in the presence of substantial genetic
heterogeneity, indicates that this analysis model is suf-
ficiently robust to deal with the situation as it stands,
since, in either case, we would conclude that there was
a gene at PS1.

The most curious aspect of these analyses was the
possible second QTL on chromosome 14. It could not
be characterized as a clear signal because the signal seen
in the analysis run presented here was not present in all
analysis runs. The only consistent factor was the place-
ment of somewhat more QTLs in the region than either
were seen in regions with clearly no linkage to the disease
or were expected, on the basis of the prior distribution
of localizations. These placements led us to conclude that
there was, in fact, a signal in the data at that region,
but it was quite weak and could be a result of sampling
error, of low heterozygosity of the markers in the region,
or of the considerable missing data in the LO families.
These results will need follow-up of typing additional
markers on chromosome 14 in future work.

Unlinked QTLs

Our analyses found evidence for additional unlinked
genetic effects, in addition to those localized on chro-
mosomes 1 and 14. The largest of these unlinked QTLs
in the chromosome 14 all-families analysis probably rep-
resents PS2. There were also more unlinked QTLs with
larger variances in the all-families analysis than in the
VG-families analysis, which suggests the presence of ad-
ditional genetic factors in the LO families. It should be
noted that a single QTL located elsewhere may, in fact,
represent several trait loci. There is no way to distinguish
between two loci with similar effects with segregation
analysis. The number of unlinked QTLs may therefore
indicate the minimum number of additional QTLs lo-
cated elsewhere on the genome. However, a QTL could
also arise in the model as a result of mitochondrial in-
heritance, a transmissible environmental factor, or sim-
ple noise due to, for example, deviation from the nor-
mality assumption. Also, an unlinked QTL may be the
result of mistyping or genetic map misspecification that
prevents placement into the correct location. In addition,
QTLs may need some iterations for their parameter val-
ues to “settle down” before they can be placed on a
chromosome, and, as the parameter values wander, a
QTL may go through periods of not being linked, as
can be seen with the large-effect QTL in the VG-families
analysis. Thus, the number of unlinked QTLs typically
present in an analysis can be taken as a rough esti-
mate of the number of genes to be found on other
chromosomes.
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Exclusion

Since these methods allow exploration of a wide range
of additive models, exclusion under these methods is
more meaningful than exclusion with traditional map-
ping techniques for a complex trait. In a region with no
linkage information from the markers, one would expect
to see a distribution of QTLs congruent to those placed
“elsewhere,” with the frequency proportional to the
prior possibility of linkage to that region. It is more
difficult to exclude smaller-variance QTLs, because these
effects can be placed almost anywhere. In the VG-fam-
ilies analysis, for example, we excluded chromosome 5
for all but the smallest-variance QTLs. On chromosome
14, with the VG families, in regions where the markers
were good, all but the smallest-variance QTLs were also
excluded. In regions where the marker coverage was
poor, or where the markers were not very polymorphic,
however, only large-variance QTLs could be excluded,
although there was certainly no strong support for mod-
erate-variance QTLs localized on chromosomes 14 in
the VG families. On chromosome 1, there was a strong
signal at the PS2 location, but other regions appeared
to be excluded. The second signal on chromosome 14
in the all-families analysis was best characterized as
something between a failure to exclude the region and
positive evidence for localization of a gene.

Age-at-Onset Model

The limitations of the age-at-onset model used here
are not yet fully apparent. There is an implicit assump-
tion that everyone will get the disease if they do not die
of something else first. This means that, if a reasonable
number of people do not get the disease, they would
have to be given a QTL genotype with mean onset sig-
nificantly after death. This could cause problems, if one
were to use this method for, say, a childhood-onset dis-
ease. The distributions for the “well” and “sick” indi-
viduals would be so far apart that there might be a very
low probability of midlife onset, causing computational
problems or preventing proper mixing of the MCMC
sampler. Thus, the model is best-suited to diseases in
which onset can and does occur at a wide range of ages
and will likely work particularly well for other “diseases
of aging,” such as heart disease, depression, and some
cancers that become increasingly prevalent as people
age. That this model did localize the PS2 gene in the
VG-only sample, in which most of the onsets were in
fact before an age at which death might occur more
typically, suggests that this method might work for dis-
eases with a midlife onset, such as schizophrenia, but
the usefulness of this method for such mid-onset diseases
remains to be determined.

Another factor that may limit these methods is the
assumption that the ages at onset for each genotype are
normally distributed, with each distribution having the

same mean. Such an assumption would be consistent
with, for example, a disease in which the genes deter-
mined a basic “fitness,” and then random environmental
“hits” occurred throughout life. This normality as-
sumption is not unreasonable for many diseases, in-
cluding AD, in which the onset ages of the chromosome
14 PS1 mutation–carrying individuals has been observed
to be normally distributed. Even if the assumption of
normality is violated, there may be a transformation of
the age data that does not violate the assumption.

The model described in the present paper represents
an important advance in the development of methods
applicable for whole-genome linkage analysis of late-
onset disease data. By taking age at onset as our quan-
titative trait with censoring information of unaffected
individuals, we have a more informative phenotype than
simply considering affectation status or age at onset in
affected subjects, and thus more power to dissect com-
plex traits. It is clear that this method worked well with
our existing AD data, finding both known AD genes.
We believe that this model will work well with most
common diseases of a degenerative nature that have a
variable onset age and that it may also help with other
phenotypes with which a censoring model is
appropriate.
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